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LETTER TO THE EDITOR 

The Marshall-LiebMattis theorem for a class of t - J  model 
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Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171, Japan 

Received 23 March 1990 

Abstract. We consider a class of t - J model on a bipartite lattice characterised by negative 
hopping matrix elements within the same sublattice. When there are one or two (one in 
each sublattice) holes, we extend the theorems by Marshall and by Lieb and Mattis which 
determines the basic structure of the ground state. When the two sublattices contain the 
same number of electrons, the ground state is unique, is spin singlet, and satisfies the 
Marshall sign rule. 

It is known rigorously that the ground state of a Heisenberg antiferromagnet on a 
finite bipartite lattice satisfies rather strong constraints. When two sublattices are 
identical, Marshall’s classical result [ 11 implies that the ground state is non-degenerate, 
is spin singlet, and satisfies the so-called Marshall sign rule. Lieb and Mattis [2] 
derived stronger results for an arbitrary bipartite lattice. Recently Lieb [3] proved 
similar results for the exactly half-filled Hubbard model. 

During the recent intensive study of the Heisenberg antiferromagnet, it has become 
clear that such rigorous constraints are quite important even in a heuristic or a numerical 
analysis of the problem. In the RVB (resonating-valence-bond) approaches [ 41, the 
Marshall rule is used to determine the signs of the coefficients in the valence-bond 
states. It was also found that [ 5 ] ,  by making full use of the Marshall condition, one 
can reduce the dimensionality of the matrix to be diagonalised in calculating the exact 
ground state of a finite system. In some cases this reduction is so efficient that one 
only has to diagonalise a 3 x 3 matrix to get the ground state of a 10-spin system [ 5 ] .  

In an electron system which is not exactly half-filled, however, there is no apparent 
reason for the Marshall-Lieb-Mattis conditions to be satisfied. The famous Nagaoka 
theorem [6] and the recent exact results in the large-n t - J  model [7] provide concrete 
examples where the conditions are violated by the dynamical freedom of holes. 
Although being exact, both examples are limited to special cases, namely, U = 00 and 
precisely one hole in the former, and n = 00 in the latter. (Here n is the ‘flavour’ of 
electron, and n = 2 is the standard system.) We must conclude that our knowledge on 
the general structures of the ground states of doped electron systems is rather incom- 
plete. 

In the present letter, we show that, in a special class of t - J  model, the strict 
extensions of the Marshall-Lieb-Mattis theorem can be proved. The t - J model is 
probably the simplest model for strongly electron systems including dynamical holes. 
It describes electrons hopping around the lattice interacting with each other through 
infinitely large on-site Coulomb repulsion and nearest-neighbour antiferromagnetic 
interaction. 
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The model is defined on a finite bipartite lattice, and is characterised by negative 
hopping matrix elements within the same sublattice. The proof works when there are 
one or two holes, but in the latter case we require that each sublattice contain one 
hole. Unfortunately such models may not be very realistic as models for the existing 
materials. However we believe that the present example sheds some light on the basic 
nature of the doped electron systems and, perhaps more importantly, provides textbook 
examples where the effect of doping can be studied by efficient diagonalisation 
algorithm in the spirit of [ 5 ] .  

Consider a finite lattice which can be divided into two sublattices A and B, which 
consist of [AI sites and IB( sites, respectively. For convenience we associate an integer 
with each lattice site, so that i =  1,. . . , IAl are in the A sublattice and i =  
[AI + 1 , .  . . , [AI + IBI are in the B sublattice. We put N electrons on the lattice without 
allowing any double occupancy. A site without an electron is said to be occupied by 
a hole. We denote by NA and NB the number of electrons on the A and B sublattices, 
respectively. 

We consider the following t - J Hamiltonian. 
H =  -c t i j ( C ; t C j r + C ; J C j J ) + C  JVSj.Sj .  (1) 

i , j  i,j 

The anticommuting operators c ; ~  and cj, creates and annihilates, respectively, an 
electron at site i with spin U. The second summation is taken over sites i, j occupied 
by electrons where the spin operator Si = ( S : ,  Sy, S f )  is defined by 

1 1 
2 2i s: = -( c;tciJ + C l & C i t )  s; = - ( CTtCiJ - c;,cit) 

1 
2 

s: =-(c~,c,~+c:Jc,~). 

Here we consider a class of models which satisfy the following. 
(i) t, = f,, s 0 where i and j belong to the same sublattices. t ,  = f,, = 0 when i and 

j belong to the different sublattice. Therefore electrons hop only within one of the 
sublattices. Note that both N A  and NB become conserved quantities under this 
condition. 

(ii) J , S O  (antiferromagnetic) when i and j belong to the different sublattices. 
J,, s 0 (ferromagnetic) when i and j belong to the same sublattice. 

(iii) All the sites are connected by non-vanishing J,,, and all the sites in each 
sublattice are connected by non-vanishing t,. 

(iv) There are one or two holes. In the latter case, there is one in each sublattice. 
In other words, NA=IAl, IAl-1 and NB=IBI, IB(-1. 

Note that the most standard t - J model with nearest-neighbour hoppings does not 
satisfy our condition (i). An example of the model which meets our conditions is a 
special (and an artificial) case of the so-called t - t' - J model [8] (see figure 1 )  for 
the Cu-0 plane in the high-T, superconductors. The model is characterised by 
negative nearest-neighbour hoppings f, negative next-nearest-neighbour hoppings t' ,  
t", as well as nearest-neighbour antiferromagnetic couplings J. By setting t = 0 in the 
t - t' - J model we get a model which satisfies our conditions. It is natural to expect 
that adding sufficiently small positive t in this model does not change our conclusions. 
But we have no rigorous estimates. 

Before stating our result we specify the basis states we work with. When there is 
only one hole, the basis state is given by 

(2a) 
I+oc(U) t t I i ;  U)= (-1) C l v , C 2 v * .  . . ~ ~ - l m , - l ~ ; + l m , * l  * * * ctN+M"+M1o) 
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Figure 1. The 1 -  1’-I  model [8] falls into our class when t = O  and t ‘ ,  t ” < O .  

where i is the position of the hole, U = {a,, . . . , c r N t M }  represents the spin of electrons, 
and . (U) is the number of electrons with downward spin on the A sublattice. The 
vacuum 10) is the state with no electrons. When there are two holes, i.e. one in each 
sublattice, the basis state is 

where i, j are the positions of the holes. 

and define the total S’ operator as X i  Sf.  Then we have the following theorem. 
As usual we denote the eigenvalue of the operator S’ (where S = X i  Si) as S (  S +  l ) ,  

Theorem. Consider a t - J  model which satisfies (i)-(iii). We restrict ourselves to a 
sector with fixed NA and NB allowed in (iv). Then the ground state (of this sector) 
has total spin S = INA - N B 1 / 2 ,  and is unique up to the trivial ( 2 S +  1)-fold degeneracy. 
Moreover when the ground state is also an eigenstate of the total S’, it is a linear 
combination of all the basis states (2) which have given S’, and all the coefficients are 
strictly positive. 

ProoJ The proof is easy after finding out what should be proved. The first thing we 
should note is that, for arbitrary distinct basis states Is), Is’) of the form (2), we always 
have that ( s l H l s ’ ) ~  0. The proof of the inequality for the antiferromagnetic interaction 
part is elementary, and is the same as that in [ l ,  21. To prove the inequality for the 
hopping part, we note that there is an identity 

( C : ~ C k t + C r l C k l ) ( - l ) i + J ( C : u l C ~ u z  * * * c ~ - l ~ , - , c : + l u , + ~  . . * C ; + M U , . , + ~ )  

- k + j  t t - 4-11 ( c l u i c 2 u z .  * .  c L - l u k - , ~ L + l u ~ + l  * * CIFN+MuN+M) 

(where we set ui = a k  on the right-hand side) and the similar one with i a n d j  exchanged, 
which follow from the anticommuting nature of the electron operators. We also note 
that all the basis states with common NA, N,, and S‘ are connected to each other 
through a sequence of non-vanishing matrix elements of H. Then it follows from the 
Perron-Frobenius theorem? (or the ‘node counting argument’) that, in each sector 

t Let M ={ME,} be an n x n matrix with M,, 0 for i # j .  We assume that M is indecomposable in the sense 
that, for any i, j ,  there is a sequence ti,, i,, . . . , i,} with i = i,, j = i,, and M,,,,+, # 0 for all k < K. Then 
the Perron-Frobenius theorem states (among other things) that the eigenstate of M with the minimum 
eigenvalue is unique (up to normalisation), and can be written as a linear combination of all the basis 
vectors with strictly positive coefficients. 
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with fixed N A ,  N B ,  and S', the lowest energy state is unique, and is a linear combination 
of all the basis states (in the sector) with strictly positive coefficients. This proves the 
half of the theorem. 

Now it remains to determine the total spin of the ground state. This could be done 
in a way exactly the same as in [2], but here we take a short cut. If we set tij = O  for 
all i, j ,  then the model reduces to a standard Heisenberg antiferromagnet, and Lieb 
and Mattis' theorem [2] determines the ground states. The ground states are degenerate 
up to the positions of the static holes, but they all have the value of total spin claimed 
in our theorem. Adding sufficiently small negative t i j  (which satisfy our criterion) will 
lift the degeneracy, but does not change the total spin. Since the ground state is known 
to be unique for any negative tu which satisfy our criterion, the total spin is unchanged 
and is equal to the value claimed in the theorem. 

It is a pleasure to thank R Saito, M Kohmoto and H Matsukawa for useful discussions 
on related topics. I also thank the referee for his comment which led to a simplification 
of the proof. 
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